A CDCC extension to microscopic three-cluster projectiles

E. C. Pinilla and P. Descouvemont

Third Andean school on nuclear physics

Outline

1. Introduction

2. Microscopic CDCC method

3. Applications on the elastic scattering of the exotic nuclei

4. Conclusions

Chart of nuclides

↔ Stable nuclei: Show up in nature; $\tau > 10^8$ yr.

- Unstable nuclei: $\tau < 1$ d.
- Exotic nuclei: Nuclei far from stability.

Chart of light nuclides

Weakly bound nuclei

Cluster models

Non-microscopic

Nucleus-nucleus interaction: In many cases not very well known.

• Antisymmetrization effects are simulated by a suitable choice of nucleus-nucleus potentials.

Microscopic

- Nucleon-nucleon interactions.
- The Pauli principleis exactly taken into account.
- Number of bodies increase: More difficult calculations.

Describing exotic nuclei

• Exotic nuclei are studied experimentally and theoretically through reactions (mostly breakup). Elastic are the starting point.

• An accurate description of the wave function of the projectile is needed into the reaction model.

Describing exotic nuclei

• Including a microscopic cluster description of exotic nuclei into reaction models is a current area of research: (mixing structure and reaction models):

E. Pinilla & P. Descouvemont, Phys. Lett. B 686 124 (2010).

Elastic scattering

E. Pinilla & P. Descouvemont, Phys. Rev. C 89, 054615 (2014).

E. Pinilla & P. Descouvemont, Current.

Continuum discretized coupled channels (CDCC) method

We wish to solve the Schrödinger Eq.

 $H_{PT}\Phi(\xi_P, \boldsymbol{R}) = E_T \Phi(\xi_P, \boldsymbol{R}),$ with

$$H_{PT} = T_R + H_P(\xi_P) + V_{PT}(\xi_P, \boldsymbol{R}).$$

 $T_R \rightarrow P-T$ relative kinetic energy,

$$V_{PT} = \sum_{i=1}^{8} V_{iT} (\xi_P, \mathbf{R}),$$

$$\rightarrow \text{P-T Potential}$$

$$V_{iT}(\xi_P, \boldsymbol{R}) = V_{iT}^N(\xi_P, \boldsymbol{R}) + V_{iT}^C(\xi_P, \boldsymbol{R}),$$

Nuclear Coulomb Nucleon-Target Nucleon-Target

 $\xi_P \rightarrow$ Internal coordinates of the projectile $H_P(\xi_P) \rightarrow$ Internal Hamiltonian of the projectile

 $\Psi_i(\xi_P) \rightarrow \text{State of the projectile}$

Continuum discretized coupled channels (CDCC) method

In the CDCC method the total wave function is expanded in the eingefunctions of the projectile $\Psi_i(\xi_P)$

$$\Phi(\xi_P, \mathbf{R}) = \sum_i \Psi_i(\xi_P) \chi_i(\xi_P, \mathbf{R})$$

To get

Continuum discretized coupled channels (CDCC) method

Microscopic model of the projectile

The Schrödinger equation of the projectile

 $H_P \Psi_i^{J_P M_P \pi_P} (\xi_p) = \epsilon_i \Psi_i^{J_P M_P \pi_P} (\xi_P),$

is obtained from Slater determinants

for

 $\epsilon_i < 0$, Bound states $\epsilon_i > 0$, Pseudostates (Aprox. Continuum)

Characteristics of the microscopic CDCC model*

☺ High predictive power:

Wave functions of the projectile→ nucleon-nucleon interactions

☺ The model is based on:

Nucleon-Target interactions (large known set available)

(nucleus-nucleus interactions unknown in many cases)

- ☺ Influence of continuum states on reactions.
- ☑ Non free parameter.

* P. Descouvemont and M. Hussein, Phys. Rev. Lett. 111 (2013) 082701.

Elastic scattering of ⁸B+¹²C

Fair agreement with experimental data (no fitting parameters).

Influence of continuum states on the elastic scattering.

Elastic scattering of ⁸Li+¹²C

Fair agreement with experimental data (no fitting parameters).

Influence of continuum states on the elastic scattering.

Elastic scattering of ⁸B+⁵⁸Ni

Slow convergence (time consuming calculations!).

Influence of continuum states on the elastic scattering.

Conclusions and Remarks

We introduce a precise microscopic wave function of the projectile (microscopic three-cluster model) to study the elastic scattering of ⁸B and ⁸Li.

We observe an influence of continuum states on the elastic scattering of the studied projectiles.

We get a fair agreement with the experimental data without any adjustable parameter.

 \succ We can predict cross sections to be further measured.

Thank you for your attention