Connecting the Micro to the Macro in Dense Stars

Liliana Caballero University of Guelph

Third Andean School on Nuclear Physics July 27th 2017

Modern Nuclear Astrophysics

How and where are the heavy elements made?

What are the mechanisms of stellar explosions?

What is the nature and structure of matter under extreme conditions?

What are the mechanisms of stellar explosions?

Supernovae

Gamma ray bursts (GRB)

What is the nature and structure of matter under extreme conditions?

Magnetic Field: 10⁸ -10 ¹⁵ G (Earth's ~ 0.6 G) Mass= 1.4 Solar masses Radius = 12 km

Density: 10^9 to 10^{15} g/cm³ (lead= 11 g/cm³, nucleus = 2.3x10¹⁴ g/cm³)

Image Credit: NASA/AIA

Neutron star structure

Observations

Swift: Gamma-rays

Hubble Space Telescope

LIGO: Gravitational Waves

SuperK: Neutrinos

Simulations

GR simulation, M=1.5 solar masses, initial magnetic field of 10¹² G, ideal gas, L. Rezzolla et al, Astrophys. J. Lett. 732, L6 (2011)

Artwork Credit: NASA, and M. Weiss (Chandra X -ray Center)

Modern Nuclear Astrophysics

- Neutrinos under extreme conditions
- Nucleosynthesis
- The nuclear matter Equation of State (EOS)

Modern Nuclear Astrophysics

- Neutrinos under extreme conditions
- Nucleosynthesis
- The nuclear matter Equation of State (EOS)

Electron antineutrino surface

BH=3 solar masses, accretion rate of 5 solar mass/s. GR steady-state simulation , Chen and Belobodorov APJ (2007)

O. L. Caballero et al PRD (2016)

Caballero, McLaughlin, Surman. PRD 2009

Neutrinos will be deflected and their energies will be redshifted

Neutrino flux under the influence of strong gravitational fields

$$\phi^{eff} = \frac{1}{4\pi} \int d\Omega_{ob} \phi_{ob}(E_{ob})$$

$$\phi_{ob}(E_{ob}) = \frac{g_{\nu}c}{2\pi^{2}(\hbar c)^{3}} \frac{E_{ob}^{2}}{\exp\left(\frac{E_{ob}}{T_{ob}}\right) + 1}$$

$$E_{em} = (1+z)E_{ob}$$

$$1 + z = \frac{(p_t u^t + p_r u^r + p_\theta u^\theta + p_\varphi u^\varphi)_{em}}{(p_t u^t + p_r u^r + p_\theta u^\theta + p_\varphi u^\varphi)_{ob}}$$

Deflection of trajectories

$$d\Omega_{ob} = \sin\xi \, d\xi d\alpha$$

Neutrinos follow null geodesics in the metric imposed by the mass distribution

Neutrinos under strong gravity

Observer at (x,z)=(40,48) km

High energy tail of the flux is reduced

Neutrinos under strong gravity Fluxes depend on observer's direction and BH spin

O. L. Caballero, T. Zielinski et al PRD (2016)

Supernova: R= 1/ms, L=10⁵² erg/s, E~ 11 MeV, t=10 sec

- Strong gravity impacts observable neutrino quantities: detection rates, spectra, oscillations...
- Neutrinos from mergers will not be mistaken for Supernova neutrinos
- We could detect neutrinos from:
 - Milky way and satellite galaxies in SuperK
 - Andromeda (780 kpc) in HyperK

Modern Nuclear Astrophysics

- Neutrinos under extreme conditions
- Nucleosynthesis
- The nuclear matter Equation of State (EOS)

Nucleosynthesis

Neutron rich

r-process = heavy element synthesis

$$e^{+} + n \leftrightarrow p + \bar{\nu}_{e}$$

$${}^{A}_{Z}X + n \leftrightarrow {}^{A+1}_{Z+1}X + \bar{\nu}_{e} + e + \gamma$$

rapid neutron capture: neutron capture rate is larger than beta emission rate

Nuclear structure Nuclear reactions Mass models

Nucleosynthesis depends on neutrinos and outflow conditions

 $\overline{\nu}_e + p \leftrightarrow e^+ + n$ $\nu_e + n \leftrightarrow e + p$

If both neutrino and antineutrino fluxes are weak, the nucleosynthesis will strongly depend on the outflow conditions

Outflow-Neutrino driven wind (observer)

GR: Does not depend on the on the disk model

T[MeV]

200

150

y[km]

100

50

0

Caballero, McLaughlin, Surman. ApJ 2012

40 20

0

-20

-40

-200

-100

0 x[km]

100

200

• GR effects reduce the neutrino fluxes at high energies (strong for antineutrinos)

- Neutrinos lose some of the influence in setting the neutron to proton ratio
- Abundances (r-process) depend on the conditions of the outflow, the geometry of the disk, and on neutrino fluxes.

Modern Nuclear Astrophysics

- Neutrinos in dense matter
- Nucleosynthesis
- The nuclear matter Equation of State (EOS)

Equation of State (EOS)

PV=nRT Ideal Gas

 $P = K \rho^n$ Polytrope

Modern EOSs depend on nuclear interactions

Electron antineutrino surfaces

Fully relativistic 3D merger simulation with neutrino cooling, C. Palenzuela et al PRD 2015

O. L. Caballero (2016)

Could we infer the EoS from the neutrino detection?

Fully relativistic 3D merger simulation with neutrino cooling, C. Palenzuela et al PRD 2015

Supernova: R= 1/ms, L=10⁵² erg/s, E~ 11 MeV, t=10 sec

• Soft EOS would produce a stronger (more energetic and more counts) neutrino signal compared to a stiff EOS.

• It could be possible to infer the nuclear matter EOS from neutrino and gravitational wave signals.

Conclusions

- Nuclear astrophysics is entering an era of unprecedented developments. Contributions from nuclear physics together with multi-messenger observations will unravel new mysteries.
- Matter at extreme conditions, e.g black hole accretion disks, neutron stars, supernovae provide information to understand the nucleus and vice-versa.
- Neutrinos play a crucial role in the synthesis of elements, and supernovae. Their effect depends of the matter conditions and the space-time geometry.

What is next?....

- How does the EOS affect the synthesis of heavy elements in neutron star mergers?
- How does the black hole spin affect the matter electron fraction in neutrino driven winds from accretion disks?
- How the elemental abundances?
- How does neutron degeneracy influence the neutron capture rates?
- How do nucleon-nucleon correlations change the neutrino surface and related quantities such as electron fraction?

Collaborators

- G. McLaughlin (North Carolina State University), R. Surman (University of Notre Dame), T. Zielinski*(University of Guelph)
- Luis Lehner (Perimeter Institute), Carlos Palenzuela (University of the Balearic Islands), David Neilsen (Bringham Young U.), Steve Liebling (Long Island U.), Evan O'Connor (North Carolina State University)